Behavioral Therapy for Weight Loss in Schizophrenia

Jaspreet S. Brar, M.D., M.P.H.; Rohan Ganguli, M.D.; Gahan Pandina, Ph.D.; Ibrahim Turkoz, M.S.; Sally Berry, M.D.; and Ramy Mahmoud, M.D.

Background: Obesity is common in persons with schizophrenia. Besides its adverse health effects, obesity reduces quality of life and contributes to the social stigma of schizophrenia.

Method: This 14-week, multicenter, open-label, rater-blinded, randomized study evaluated the effects of a group-based behavioral treatment (BT) for weight loss in overweight and obese stable patients with DSM-IV schizophrenia or schizoaffective disorder who had been switched from olanzapine to risperidone. Participants were randomly assigned to receive BT or usual clinical care (UC). BT included 20 sessions during which patients were taught to reduce caloric intake. In UC, patients were encouraged to lose weight but received no special advice about weight reduction. The primary outcome measure was change in body weight.

Results: Seventy-two patients were enrolled. The mean ± SD weight loss at endpoint was significant in both groups (p < .05) and numerically greater in patients receiving BT than in those receiving UC (–2.0 ± 3.79 and –1.1 ± 3.11 kg, respectively). More patients in the BT group than in the UC group had lost ≥5% of their body weight at endpoint (26.5% [9/34] and 10.8% [4/37], respectively; p = .082). A post hoc analysis of patients attending at least 1 BT session showed that significantly more patients in the BT than the UC group had lost ≥5% of their body weight at endpoint (32.1% [9/28] vs. 10.8% [4/37], respectively; p = .038) and at week 14 (completer population; 40.9% [9/22] and 14.3% [4/28], respectively, p = .027).

Conclusion: BT may be an effective method for weight reduction in patients with chronic psychotic illness.

and contributes to the disability and social stigma associated with schizophrenia.14,15

Weight gain in schizophrenia has a multifactorial etiology involving clinical, physiologic, genetic, psychosocial, and environmental factors. The clinical and physiologic causes of obesity are unclear, but multiple mechanisms have been suggested to explain antipsychotic-induced weight gain, including serotonergic, dopaminergic, adrenergic, histaminergic, glutamatergic, and cholinergic blockade, as well as metabolic effects related to glucose and leptin regulation.16–19 Therefore, it is not unexpected that individual agents, which have different receptor-binding profiles,20 each have different propensities to induce weight gain. Clozapine and olanzapine are most likely to induce weight gain, whereas risperidone is less likely and ziprasidone the least.19,21 As more evidence emerges about the different potential of individual agents for inducing weight gain and associated metabolic abnormalities, reasons for switching stable antipsychotic-treated patients from one agent to another may become more compelling.

Nutrition is an important environmental factor related to obesity, and only a handful of studies have examined diet or dietary choices and their association, if any, with body weight in patients with schizophrenia. Studies completed in the United Kingdom have shown that the diet in patients with schizophrenia is high in fat and low in fiber and vitamins as compared with that of the general population.22 Other studies have suggested that obesity in schizophrenia may result from poor dietary choices or from a medication-related side effect.23,24 In a survey of outpatients with schizophrenia in remission, the authors observed that patients with schizophrenia consumed larger quantities of food than a reference population.24 Although there were no significant differences in the various components of foods consumed (e.g., the percentage of carbohydrates and saturated and unsaturated fats), patients with schizophrenia consumed larger quantities, and hence more calories, than age- and gender-referenced controls.

The efficacy and safety of pharmacologic treatments for obesity in patients with schizophrenia have not yet been established. Adjunctive use of fluoxetine, sibutramine, amantadine, and topiramate has shown variable efficacy for inducing weight loss in these patients, but the use of these agents may be limited by their side effects.18 There is also concern about adding weight-reducing agents to a regimen of psychotropic agents, especially as the agents with the highest efficacy have the potential to worsen psychotic symptoms. Furthermore, polypharmacy increases the cost of care. Therefore, nonpharmacologic approaches have appeal as complementary approaches to pharmacotherapy in improving health and well-being for schizophrenia patients. Behavioral approaches for the management of various functional domains, such as those aimed at improving medication compliance and social skills, have shown promise in schizophrenia. Therefore, behavioral approaches for weight reduction aimed at reducing caloric intake and increasing energy expenditure are logically appealing.

A review of studies examining behavioral treatments for weight reduction in patients with schizophrenia is presented in Table 1. Fewer than half of the studies had a comparator group, and only 3 studies randomly assigned patients to the behavioral weight-loss intervention.26,30 Thus, for the majority of studies, a selection bias resulting from enrollment of those patients who were already motivated to lose weight cannot be ruled out. With the exception of the case report,25 the mean weight loss ranged from 0.06 to 13.1 lb over a period of 10 to 24 weeks. Despite the deficiencies in methodology, the results of these studies suggest that behavioral interventions are effective for producing modest weight loss.

We report the results of an open-label, randomized study designed to evaluate the effects of behavioral treatment on weight loss in overweight and obese patients with schizophrenia or schizoaffective disorder. This 14-week study was the second phase of a 20-week study designed to evaluate the safety and efficacy of 3 paradigms for switching stable patients with schizophrenia or schizoaffective disorder from olanzapine to risperidone (R.G. et al., manuscript submitted). At phase 1 baseline, patients were randomly assigned to 1 of 3 switch paradigms as follows: Abrupt strategy (no overlap of risperidone and olanzapine), Gradual 1 strategy (50% reduction in olanzapine while titrating risperidone), and Gradual 2 strategy (100% of olanzapine dose for 1 week while titrating risperidone, decreasing to 50% for 1 week, then discontinuation). Patients were subsequently treated with risperidone for 6 weeks.

METHOD

At the end of the first 6-week phase, patients with a body mass index (BMI) of > 26 kg/m² were invited to participate in a weight-loss treatment program, and consenting subjects were randomly assigned to either 14 weeks of behavioral treatment (BT) for weight loss or usual clinical care (UC). A BMI of > 26 kg/m² was chosen as an inclusion criterion for the study for 2 reasons: first, it was felt that patients who barely met the standard criterion for overweight (BMI > 25 kg/m²) may not have sufficient motivation to lose weight and, second, given small fluctuations in daily body weight, this higher criterion made it less likely that patients whose weight fluctuated between normal and overweight would be included. BT therapy included 20 sessions over a 14-week period, during which patients were taught various behavioral techniques for weight loss. UC involved no additional interventions, but did include monthly measurement of weight. The trial was conducted in accordance with current International Conference on Harmonisation (ICH)—
Table 1. Studies Examining Behavioral Treatment for Weight Reduction in Patients With Schizophrenia

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Technique</th>
<th>Control Group</th>
<th>Randomized Dropout Rate</th>
<th>Duration</th>
<th>Weight Change</th>
<th>Weight Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore and Crum, 1969</td>
<td>25</td>
<td>Operant conditioning</td>
<td>No</td>
<td>NA (single case study)</td>
<td>26 wk</td>
<td>Loss of 1.1 lb</td>
<td>Loss of 35 lb</td>
</tr>
<tr>
<td>Rotatori et al, 1980</td>
<td>14</td>
<td>Behavioral technique to reduce caloric intake</td>
<td>Yes</td>
<td>No dropouts</td>
<td>14 wk</td>
<td>Mean loss of 7.3 lb</td>
<td>Mean loss of 7.3 lb</td>
</tr>
<tr>
<td>Wirshing et al, 1999</td>
<td>92</td>
<td>Stepwise intervention with food diary, exercise, and group support</td>
<td>No</td>
<td>No</td>
<td>6-15 mo</td>
<td>Reduction in weight gain in patients treated with olanzapine</td>
<td>Reduction in weight gain in patients treated with olanzapine</td>
</tr>
<tr>
<td>Ganguli et al, 2001</td>
<td>8</td>
<td>Behavioral technique to reduce caloric intake</td>
<td>Yes</td>
<td>47.6%</td>
<td>12 wk</td>
<td>Mean loss of 1.1 lb</td>
<td>Mean loss of 1.1 lb</td>
</tr>
<tr>
<td>Littrell et al, 2003</td>
<td>70</td>
<td>Intensive educational program</td>
<td>Yes</td>
<td>No dropouts</td>
<td>1.5 y</td>
<td>Mean loss of 6.6 lb</td>
<td>Mean loss of 6.6 lb</td>
</tr>
<tr>
<td>Centorrino et al, 2002</td>
<td>17</td>
<td>Diet, lifestyle counseling, and exercise</td>
<td>No</td>
<td>No reported</td>
<td>24 wk</td>
<td>Mean loss of 2.7 kg in intervention group, control group gained over 9 lb</td>
<td>Mean loss of 2.7 kg in intervention group, control group gained over 9 lb</td>
</tr>
<tr>
<td>Menza et al, 2003</td>
<td>31</td>
<td>Weight control program incorporating nutrition, exercise, and behavioral interventions</td>
<td>Yes</td>
<td>No</td>
<td>12 wk</td>
<td>Mean loss of 6.6 lb</td>
<td>Mean loss of 6.6 lb</td>
</tr>
<tr>
<td>O'Keefe et al, 2003</td>
<td>35</td>
<td>Retrospective chart review of diet, weight loss at treatment goal</td>
<td>No</td>
<td>NA</td>
<td>Approximately 5 y</td>
<td>Mean loss of 6.6 lb</td>
<td>Mean loss of 6.6 lb</td>
</tr>
</tbody>
</table>

Abbreviations: BP = blood pressure, ITT = intent-to-treat, NA = not applicable.
followed by 1 session per week for 8 weeks (a total of 20 sessions). The first session was to occur no later than 2 weeks after week 6 of the phase 1 study. At these sessions, patients were taught the following weight-loss techniques: during weeks 1 and 2, self-monitoring of daily weight and recording of food consumed; weeks 3 and 4, modifying urges to overeat by using a cognitive technique to reinforce abstinence from or postponement of snacks; weeks 5 and 6, decreasing food cues to overeat by limiting eating to 1 physical area and limiting meals to 1 helping only; weeks 7 and 8, developing good eating habits by slowing the pace of eating; weeks 9 and 10, imposing self-control of overeating by leaving some food on the plate; weeks 11 and 12, burning calories by exercising more; and weeks 13 and 14, changing snacking habits and snacks.

The group leader presented the rationale and a detailed description of each of the techniques a week before their implementation. In addition, the technique was also demonstrated in a simulation using food models if necessary. Patients were asked to rehearse the technique with the group leader, who provided feedback on their performance. These instruction and rehearsal sessions were repeated at each visit. At the final session, patients in the BT group were given a written summary of all the techniques taught during the study, as well as basic information about nutrition, and were encouraged to refer to these guidelines frequently and to continue with their efforts to lose weight.

Patients randomly assigned to receive UC were encouraged to lose weight on their own, with no instructions from the investigators. These patients were seen at monthly intervals for anthropometric assessments.

Assessments

The primary outcome measure was the change in body weight. Other efficacy variables were the patients’ attendance at BT sessions and scores on the Client Satisfaction Questionnaire (CSQ-8). The CSQ-8 is an 8-item self-rated questionnaire that patients use to assess their satisfaction with the service provided.

Weight was measured at baseline and weeks 4, 8, and 14. Other anthropometric measurements, including height, BMI, slenderness index (height in meters divided by the sum of the wrist width and knee width in meters), waist circumference, and waist-to-hip ratio, were obtained or calculated at baseline and endpoint.

Efficacy assessments included the PANSS, Clinical Global Impressions-Change (CGI-C), and CGI-Severity of Illness (CGI-S). These assessments and the CSQ-8 were completed at baseline and weeks 4, 8, and 14. Adverse events and vital signs were recorded at baseline and regular intervals, and laboratory tests, including hematology and biochemistry, were performed at baseline and endpoint.

Statistical Analysis

Assuming that a common standard deviation is approximately 9 using a 2-group t test with a 2-sided alpha of .05, a sample size of 25 patients in each group would provide 80% power to detect a difference in means of 7 lb of body weight. Assuming a 15% dropout rate after randomization, it was necessary to randomly assign 30 patients to each treatment group (total of 60 patients).

For efficacy measures, including CSQ-8, an intent-to-treat (ITT) analysis was performed such that all patients who received at least 1 dose of study medication and had at least 1 postbaseline measurement were included. The cohort in whom PANSS and CGI scores were analyzed consisted of patients with PANSS total scores of 60 to 120 at baseline.

Change in weight from baseline, both as a categorical variable (if follow-up weight at endpoint was at least 5% less than the weight at baseline, weight loss was present; if not, weight loss was absent) and a continuous variable, was compared in the BT and UC treatment groups. Within-treatment changes were evaluated using a paired t test. All statistical tests were interpreted at the 5% significance level (2-tailed).

Changes in body weight and other anthropometric measures obtained at monthly visits were compared in the 2 treatment groups using a repeated-measures analysis of variance. Between-group differences in number and percentage of subjects with ≥ 5% reduction in weight were analyzed using a logistic regression with treatment and site in the model. Correlations between changes in weight, measures of psychopathology, adverse effect measures, CSQ-8 laboratory assessments, and vital signs were also examined. For the clinical laboratory data, descriptive statistics and pretreatment and posttreatment cross-tabulations (in which the results were classified according to whether they were below, within, or above the normal range) were generated for all tests performed. For PANSS, within-group changes were evaluated using a paired t test, and between-group changes were evaluated using an analysis of covariance with treatment site as a factor and baseline score as a covariate. The CGI scores were compared between groups using the Cochran-Mantel-Haenszel test.

Analyses were performed per study protocol on all patients randomized who received at least 1 dose of study medication, regardless of attendance at any BT sessions. However, several patients attended no BT sessions. Therefore, post hoc analysis was performed on weight measures using an attendee analysis, which included all patients who received at least 1 dose of study medication and attended at least 1 BT session. The post hoc analysis also assessed a completer population, which included attendee patients with week 14 weight data. In addition, since a high proportion of patients were morbidly obese, resulting in a higher mean baseline weight than expected, substan-
Behavioral Therapy for Weight Loss in Schizophrenia

RESULTS

Of the 123 patients who participated in the 6-week phase 1 of this study, 72 qualified for and were offered behavioral treatment for 14 weeks in phase 2. Following the switch from olanzapine to risperidone in the first phase of this study, no weight loss was observed; however, switching patients to risperidone may have avoided further olanzapine-induced weight gain. The 72 patients were randomly assigned to receive BT (N = 35) or UC (N = 37). One patient in the BT group withdrew consent, did not receive study medication, and was removed from all analyses. Seventy-one patients were included in the ITT analysis (BT, N = 34; UC, N = 37). For the attendee analysis, 6 patients in the BT group dropped out before attending a BT session, leaving 65 patients for this attendee analysis (BT, N = 28; UC, N = 37). Fifty of these patients were completers (BT, N = 22; UC, N = 28). There were no significant differences in reasons for discontinuation between the 2 groups. In both groups, the most common reasons for discontinuation were adverse events (N = 1, both groups), insufficient response (BT, N = 1; UC, N = 0), and lost to follow-up (BT, N = 2; UC, N = 1).

There were no between-group differences in patient demographics or baseline clinical characteristics (Table 2). The BT group had a slightly smaller proportion of women (52.9% [18/34] and 64.9% [24/37], respectively), but this difference was not statistically significant. The mean dose of risperidone was 4.74 mg/day in the BT group and 4.19 mg/day in the UC group. Twenty-eight patients in the BT group attended at least 1 BT session, 21 attended at least 14 sessions, and 15 attended all 20 sessions.

Weight Loss and Anthropometric Measurements

Statistically significant weight loss was reported at endpoint in both treatment groups (mean ± SD: BT, –2.0 ± 3.79 kg, p = .005; UC, –1.1 ± 3.11 kg, p = .042); the between-group difference did not reach statistical significance in this sample (Table 3). At endpoint, 9 patients (26.5%) in the BT group and 4 patients (10.8%) in the UC group lost ≥ 5% of their baseline body weight (p = .082; Table 3).

In the attendee population (patients who attended at least 1 BT session), mean weight-loss results were similar to those in the ITT group (Table 4). However, significantly more attendees in the BT group than the UC group lost ≥ 5% of their baseline body weight at endpoint (32.1% [9/28] and 10.8% [4/37], respectively, p = .038; Table 4, Figure 1), as well as in the completer population (40.9% [9/22] and 14.3% [4/28], respectively, p = .027; Table 4, Figure 1). Results were similar for percentages of patients with weight loss of ≥ 3% and ≥ 4% (Table 4).

In the ITT population, the BMI also decreased significantly from baseline to endpoint in both the BT group (–0.9 ± 1.38; p = .003) and the UC group (–0.5 ± 1.19; p = .029). There was no significant between- or within-group difference at endpoint in the slenderness index or waist-to-hip ratio, although patients who lost weight did experience reductions in both waist and hip circumference.

Table 2. Baseline Patient Demographics and Clinical Characteristics (ITT analysis)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Behavioral Treatment (N = 34)</th>
<th>Usual Clinical Care (N = 37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18 (52.9)</td>
<td>24 (64.9)</td>
</tr>
<tr>
<td>Male</td>
<td>16 (47.1)</td>
<td>13 (35.1)</td>
</tr>
<tr>
<td>Race/ethnicity, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>18 (52.9)</td>
<td>17 (45.9)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 (2.9)</td>
<td>5 (13.5)</td>
</tr>
<tr>
<td>Black</td>
<td>13 (38.2)</td>
<td>12 (32.4)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (5.9)</td>
<td>2 (5.4)</td>
</tr>
<tr>
<td>Other</td>
<td>0 (0.0)</td>
<td>1 (2.7)</td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>40.0 ± 10.1</td>
<td>40.5 ± 10.6</td>
</tr>
<tr>
<td>Range</td>
<td>21–59</td>
<td>21–64</td>
</tr>
<tr>
<td>Diagnosis, N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>21 (61.8)</td>
<td>17 (45.9)</td>
</tr>
<tr>
<td>Schizoaffective disorder</td>
<td>13 (38.2)</td>
<td>20 (54.1)</td>
</tr>
<tr>
<td>Dose of risperidone, mean (SD), mg/d</td>
<td>4.74 (1.7)</td>
<td>4.19 (1.8)</td>
</tr>
<tr>
<td>Concomitant therapy, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedative-hypnotics</td>
<td>8.8</td>
<td>5.4</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>20.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

Abbreviation: ITT = intent-to-treat.

Table 3. Weight Change at Endpoint (ITT analysis)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Behavioral Treatment (N = 34)</th>
<th>Usual Clinical Care (N = 37)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight, mean (SD), kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>101.3 (18.91)</td>
<td>98.9 (28.05)</td>
<td></td>
</tr>
<tr>
<td>Change at endpoint</td>
<td>–2.0 (3.79)</td>
<td>–1.1 (3.11)</td>
<td>.287</td>
</tr>
<tr>
<td>Patients with ≥ 5% weight loss at endpoint, N (%)</td>
<td>9 (26.5)</td>
<td>4 (10.8)</td>
<td>.082</td>
</tr>
</tbody>
</table>

*Between-group comparisons: analysis of covariance with factors for treatment and site for mean weight change; logistic regression with factors for treatment and site for distribution of categorical weight changes. Values for within-group comparisons of change from baseline were p = .005 for the behavioral treatment group and p = .042 for the usual clinical care group. Abbreviation: ITT = intent-to-treat.
Schizophrenia-Related Assessments and Client Satisfaction

Significant (p < .001) reductions in mean PANSS total, positive, and anxiety/depression scores were reported in the total patient population during phase 1 of this study and were maintained during the 14-week weight-loss phase. Mean ± SD total PANSS scores in the BT group were 63.7 ± 17.43 and 63.9 ± 22.61 at baseline and endpoint, respectively (p = .927), and in the UC group were 61.7 ± 16.81 and 60.9 ± 16.27 at baseline and endpoint, respectively (p = .728). There was no significant difference between the 2 groups in mean PANSS total scores at baseline (p = .650) or at endpoint (p = .672).

The distributions of CGI-S ratings at baseline and weeks 1, 4, 8, 14, and endpoint were not significantly different in the BT and UC groups. However, the proportion of patients who had a CGI-C rating of “much improved” or “very much improved” was greater for the BT than the UC group at endpoint (39.4% and 27.0%, respectively; p = .49). In the attendee analysis, this difference was even more apparent (46.4% [13/28] and 27.0% [10/37], BT and UC, respectively; p = .41).

The mean CSQ-8 score in the BT group increased significantly from baseline to endpoint (28.9 ± 2.77 to 30.1 ± 2.42, respectively; p = .015), whereas that in the UC group remained unchanged. The mean change in CSQ-8 score from baseline to endpoint was also significantly greater in the BT group than in the UC group (p = .004). Endpoint scores were 30.1 ± 2.42 and 27.8 ± 3.52 in the BT and UC groups, respectively.

Cardiovascular-Related Outcomes

In the ITT population, the BT group demonstrated statistically significant decreases in mean systolic blood pressure. The mean sitting systolic blood pressure in that group decreased from 122.7 ± 14.58 mm Hg at baseline to 117.8 ± 12.25 mm Hg at week 14 (p = .019). Mean standing systolic pressure was also decreased from baseline at week 14 (124.0 ± 15.35 mm Hg and 117.8 ± 11.73 mm Hg at baseline and week 14, respectively; p = .006) as well as at endpoint (118.4 ± 13.0 mm Hg; p = .014). No significant changes in systolic blood pressure were reported in the UC group. The mean sitting systolic blood pressure was 122.3 ± 15.33 mm Hg at baseline and 120.6 ± 11.92 mm Hg at week 14 (p = .514). The mean standing systolic blood pressure was 121.8 ± 13.46 mm Hg at baseline and 121.5 ± 10.28 mm Hg at week 14 (p = .710). The mean diastolic blood pressure, heart rate, and vital signs did not change significantly from baseline to endpoint in either treatment group.

DISCUSSION

This study demonstrates the feasibility and effectiveness of a specific behavioral program for weight reduction in patients with schizophrenia and schizoaffective disorder. Approximately 70% of the total sample completed the study. The attendance rates at BT sessions indi-
cated that the majority of outpatients with schizophrenia will voluntarily attend such a program, if motivated to do so. These attendance rates are similar to those reported in a study of the Weight Watchers weight loss program (once-weekly meetings presenting information on a dietary plan coupled with positive reinforcement for weight loss) that involved outpatients with schizophrenia receiving olanzapine. In that study, 66% of patients attended at least 1 meeting, and 52% completed the program.

Among patients in the present study who completed the behavioral weight loss program, half of the sample was able to lose at least 4% of their baseline weight within a period of 14 weeks. Differences between groups using the 5% cutoff were statistically significant in this sample, even though the study was not adequately powered to detect this (a sample of 190 patients should have been needed to detect this difference). While this relatively modest weight loss could be viewed as cosmetically insignificant, it has been shown that modest weight loss in moderate or severely obese individuals may be associated with health benefits. Among obese patients with diabetes, a 5% reduction in body weight has been associated with an improvement in glycemic control, less than 5% reduction with a decrease in serum triglycerides and insulin, and weight loss as little as 1 kg with a 3- to 4-month prolonged survival. Among obese patients with hypertension, modest weight loss has been associated with demonstrable benefits in blood pressure. Eliahou and colleagues have shown that for every 1% of weight lost (in percent overweight), a mean change of 1.9 mm Hg (systolic) and 1.3 mm Hg (diastolic) can be expected. A reduction of waist circumference during weight loss is also associated with cardiovascular benefits. This cumulative evidence suggests that a continuum of health benefits is associated with a continuum of weight loss.

Also of interest in this study is the positive effect of BT on overall client satisfaction as well as global severity of illness. These effects may reflect the benefits of positive psychosocial interactions associated with BT session attendance, as well as improved body image. Among patients who attended at least 1 BT session, the percentage of patients who were “much” or “very much” improved on the CGI-C was approximately twice that of the UC group (46% vs. 27%), although the difference was not significant.

Successful behavioral strategies for weight management should contain the following key elements: behavioral modification through self-monitoring and stimulus control, diet, and exercise. Differences emerge in the complexity of the instructions, the training required to implement the various programs, and the costs of the dietary recommendations. The behavioral program used in this study has appeal because, in contrast to other programs, it does not require special training to implement, has a very simple content, emphasizes reduction in the quantity of food taken in rather than extensive changes in food choice, and does not require purchase of special food supplements. Furthermore, the general applicability of this manual-based program was demonstrated by the ease with which group leaders across 19 sites were able to implement it. Thus, this behavioral treatment could emerge as a desirable nonpharmacologic option for use in any community setting that treats the chronically mentally ill.

Weight management for patients with schizophrenia is seldom emphasized and remains a poorly researched area, despite the high rates of obesity and associated medical comorbidity documented in this population. In fact, patients with chronic mental illnesses are frequently excluded from controlled weight-management studies, further compromising the health and well-being of an already disenfranchised population. In a survey completed by the RAND Corporation, it was observed that obesity has an impact on chronic medical conditions and health-related quality of life that is similar to the effects of poverty, smoking, and problem drinking on these outcomes. These physical and psychological impairments are compounded in a population that also has a high prevalence of smoking and low socioeconomic status.

The benefits of atypical antipsychotics in the treatment of patients with psychotic illnesses outweigh the risk for weight gain; however, appropriate initial choice of an antipsychotic with a lower liability for weight gain or switching patients from one with a high liability for weight gain to one with a lower liability should also be considered as part of a weight-control strategy. Maintenance of weight following a switch from olanzapine to risperidone (as well as statistically significant weight gain following a switch from risperidone to olanzapine) was observed in the present study and has also been reported elsewhere. In addition, since both the BT and UC groups lost weight in the present study, the switch to risperidone may have contributed to weight loss over the longer term.

Although this was a controlled, randomized, multicenter study, limitations include its open-label design and the lack of information about the persistence of weight loss. Furthermore, the exact mechanisms by which the positive effects on weight loss occurred might have been better elucidated by recording patient lifestyle changes and incorporating additional control groups, such as a group in which social interactions similar to those in the BT group occurred without imparting weight loss techniques or a group of overweight patients who were not encouraged to make efforts to lose weight.

This study provided evidence that behavioral therapy can reduce weight gain in obese patients with schizophrenia receiving atypical antipsychotics. However, the weight reduction observed was modest, and thus the importance of choosing an antipsychotic agent with a low propensity for weight gain remains undiminished. Further research is needed to fully elucidate the role of behavioral therapy in reducing weight gain.
Drug names: amantadine (Symmetrel and others), clozapine (Clozaril, Fazaclo, and others), fluoxetine (Prozac and others), olanzapine (Zyprexa), risperidone (Risperdal), sibutramine (Meridia), topiramate (Topamax), ziprasidone (Geodon).

REFERENCES

13. Weiden P, Mackell J. Differing side effect burdens with newer antipsychotics [poster]. Presented at the 39th annual meeting of the New Clinical Drug Evaluation Unit; June 1–4, 1999; Boca Raton, Fla
47. Ball MF, Coons VB, Buchanan RW. A program for treating olanzapine-related weight gain. Psychiatr Serv 2001;52:967–969